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Abstract : Scheduling of different processes has a significant 
effect on the overall performance of the system. Efficient 
scheduling of jobs to incongruous processors for any application 
is difficult to achieve for high performance. This paper presents 
the comparative analysis of scheduling algorithms for n- 
processes based on ant colony optimization (ACO) algorithm. 
This study uses a prototype using ACO for the arrival of 
processes at a schedule. ACO is an affective metaheuristic 
optimization technique used for finding the optimal solution for 
single as well as multi-variant problems. Moreover, the results 
present the deterministic scheduling algorithms (First Come First 
Serve and Shortest Job First) for the comparative analysis in the 
tabulated format using ACO technique for average waiting time 
and average turnaround time.of the system. Efficient scheduling 
of jobs to incongruous processors for any application is difficult 
to achieve for high performance. This paper presents the 
comparative analysis of scheduling algorithms for n- processes 
based on ant colony optimization (ACO) algorithm. This study 
uses a prototype using ACO for the arrival of processes at a 
schedule. ACO is an affective metaheuristic optimization 
technique used for finding the optimal solution for single as well 
as multi-variant problems. Moreover, the results present the 
deterministic scheduling algorithms (First Come First Serve and 
Shortest Job First) for the comparative analysis in the tabulated 
format using ACO technique for average waiting time and 
average turnaround time. 
Index Terms ACO, metaheuristic, FCFS, SJF, average waiting 
time, average turnaround time, scheduling, processes. 

I. INTRODUCTION
The incongruous computing platform meets the 

computational demands of various problems. In this type 
of platform, different types of jobs are executed in a 
sequence. The main key challenge of such incongruous 
platforms is effective scheduling [1]. Scheduling is one of 
the major factors in operating system (OS) that affects the 
overall performance of the system. By scheduling the 
processes and assigning different jobs to the processors in 
a specified sequence to maximize the systems efficiency. 
When more than one process are ready to execute in the 
ready queue, then the module of OS decides to use the 
schedulers(scheduling algorithms) that decides which 
process will be executed first. Scheduling of processes 
basically is the mapping of set of jobs to the set of 
processors which avoids the    situation where some of the 
processors are overloaded while others are idle [2]. Fig. 
(1) shows the diagrammatical structure where scheduling
fits in the multi-variant processes and their requests in a
very simplified manner [3].

There are different types of scheduling algorithms 
which satisfies the scheduling criteria of OS for 
maximizing CPU utilization. Various scheduling criteria’s 

are: average turnaround time, average waiting time, 
average response time, burst time, etc. Also there are 
various scheduling algorithms each having its own 
characteristics, which are used for scheduling jobs in OS. 
They are: first come first serve algorithm, shortest job first 
algorithm, priority based scheduling algorithm, round 
robin algorithm, etc. [4]. Different types of scheduling 
processes are performed to solve different scheduling 
problems in order to improve their efficiency as shown in 
Fig. (1). 

Several heuristic based algorithms are proposed to solve 
different types of scheduling problems. But we are using 
ant colony optimization (ACO) algorithm in our case to 
optimize the scheduling of processes. ACO finds the near 
optimal solution within the reasonable computational time. 

II. RELATED WORK
Several metaheuristic algorithms are proposed in case of 
scheduling problem. In (Braun et al., 2001) [5], the author 
has compared eleven metaheuristic algorithms for 
mapping and then scheduling a set of processes for 
minimizing the makespan of different processes. Many 
more different types of algorithms are defined such as: 
list-based scheduling algorithm (Radulescu and Gemund, 
2002) [6], cluster-based and duplication-based scheduling 
algorithm (Ucar et al., 2006) [7]. In (Blum and Roli, 2003) 
[8], the author describes the one of the popular 
approximation optimization technique, i.e, ACO. This 
technique is inspired by the foraging behavior of real ants. 
In the further addition, (Blum, 2005) [9], author suggested 
that the chemical pheromone which is deposited by the 
ants on their trail path form food source to their colony is 
the core behavior of their indirect communication. 
According to Adhokshai mishra et al [10], Genetic 
algorithm is mostly used for process scheduling in 
different OS. Its main limitation is that there is no absolute 
assurance that it will ever find the global optimum 
solution. That’s why ACO is best to be used for process 
scheduling as it gives better results for approximation and 
combinational problems. 

III. BASIC ACO ALGORITHM
Ant colony optimization (ACO) works as an optimization 
technique that was first introduced in early 1990’s by 
Dorigo and Gamberdella. It is a probabilistic algorithm 
that uses pseudorandom proportional rule. It is a 
population based metaheuristic that tackles NP-hard 
discrete and combinational optimization problems [11] 
motivated by the sharp and foraging behavior of real ants, 
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and in particular, how ants can find the shortest path 
between their colonies and the food source. Their indirect 
communication (a terminology known as Stigmergy) [12] 
is inspired by means of the trails of some chemical matter 
called pheromone. The role of pheromone is to guide the 
other ants to reach to the particular destination point. In 
Fig. 2, it is clearly observed that the quickest trail time on 
the shortest path makes the pheromone value high which is 
placed on that path. [13] 

From Fig. 2, it is clear that ant’s navigate from nest (N) to 
the food source (F). As ants are blind, the shortest path is 
discovered through the higher concentration of pheromone 
value. Ant’s move at random and deposits pheromone on 

their path. More pheromone on the path increases the 
probability of the path being followed. 
In this paper, we are going to define a new type of general-
purpose metaheuristic algorithm that can be used to solve 
different types of discrete-combinatorial optimization 
problems. The new defined metaheuristic algorithm has 
following desirable characteristics: 

• Versatile: It can be applied to the same problem
with similar versions. For example, asymmetric
travelling salesperson problem is the straight
forward extension of simple travelling
salesperson problem.

• Robust: It can be easily applied to other
combinatorial optimization problems with only
minimal changes to them. For example,
assignment problem and scheduling problem.

• Population based approach: It allows the
exploitation of positive feedback as a new
updated search mechanism.

These above mentioned desirable properties are counter 
balanced by the fact that for different applications, the 
ACO can be out performed by more specialized 
algorithms. 

FIGURE 2 Ants navigation from nest (N) to food source (F) and vice-versa. 
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IV. PROBLEM STATEMENT 
Efficient and strategic scheduling of jobs in incongruous 
processors for any type of application is difficult in order to 
achieve high performance. The core work is to find the 
feasible schedule for a given set of processors without 
exceeding their capacity, is actually, NP-hard. The study of 
this paradigm uses ACO for arriving at a schedule. 

To solve the scheduling problem, there are m processors 
(p1, p2, p3……. Pm) and all these processors have their 
static burst time. [14] Let there be n number of jobs with 
job set (j1, j2, j3, ….., jn). Therefore we will be having a 
utilization matrix U of size n*m where n be the number of 
jobs and m be the number of processors. Our main goal is 
to find the optimum sequence of processes in which the 
processes can be scheduled in such a method that total 
turnaround time and total waiting time should be 
minimum. The sample utilization matrix is shown in Table 
1: 

TABLE I 
            Utilization matrix with 3 processors and 3 jobs 

Jobs Processes 
P1 P2 P3 

J1 U1,1 U1,2 U1,3 
J2 U2,1 U2,2 U2,3 
J3 U3,1 U3,2 U3,3 

 
Where, Ui,j α Pi * Jj 
In the sample utilization matrix shown in above Table, the 
number of rows is equal to the number of jobs and number 
of columns is equal to the number of processes. 
 
A. Assumptions made by CPU Scheduling Problem. 

• There are m-processes waiting for the CPU 
allocation. 

• All the processes are independent of each other 
and all are in a competition for the allocation of 
CPU. 

• The purpose of scheduling algorithm is to 
allocate CPU to every process in some particular 
order  so that neither process have to wait for 
CPU allocation nor CPU have to remain idle in 
order to optimize the performance criteria of the 
algorithm i.e, minimum turnaround time and 
minimum waiting time. 

• The ACO based scheduling algorithm should be 
non-primitive i.e, no one can have the permission 
to get the CPU from one process and allocate it to 
another process during execution. 

• The arrival time of all the processes should be 
zero. 

V. APPLYING ACO TO SHORTEST PATH PROBLEM 
For a directed graph G= (V, E) where V is the set of 
vertices (V1, V2,…., Vn) and E is the set of edges (E1, 
E2,…., En), assign the total cost ai,j to each of its edges, 
where (i, j) ϵ E (this cost is basically the length of the 

tour). For the resulting path (n1, n2,…., nk), its cost can be 
expressed as [15]: 
ai,j  =   ∑ k-1

 i=1 ani  ni+1                    (1) 
According to the definition, a path is called the shortest 
path if it has the shortest length among all the paths from 
starting node to the terminating node. 
 The shortest path problem finds its application in various 
areas such as telecommunication problem, routing 
problem, etc. For finding shortest path in ACO, it uses 
some parameters, as shown in Table 2: 
 

TABLE II 
                 Parameters of ACO finding shortest path   
Parameters Values 

M number of Ants 
Α the parameter that defines the influence of 

pheromones on the choice of the next 
vertex 

ᵦ parameters that defines the influence of 
remaining data on the choice of next vertex 

Ρ parameters that defines the speed at which 
pheromone evaporates, where ρ = [0, 1] 

τo initial level of pheromone on edges 
τmin,τmax minimum and maximum acceptable of 

pheromones on edges 
s starting node 
t terminating node 

     
The number of ant’s m influences the accuracy of the 
solution obtained as the result of the procedure of the 
algorithm. The parameters α and ᵦ modifies the method for 
the selection and updation of the new node or vertex, 
which in turn increases the quality of the solution.  
  
Algorithm 1: ACO for shortest path problem 
Initialize (G, s) for the shortest path  
Initial vertex, s= 0; C <= 0 
for al l i ϵ V do 
    for all j ϵ V do 
         τi,j <= τo 

            vi_edgesi,j <= false 
set (i,j) be the edges not visited 
    if ai,j > C then C<= ai,j 
   end 
   Vi_nodesi <= false 
   Set i node not to be visited 
end 
cost <= C (V-1) 
time<= 0 
for k: 1 to m do 
    reset (G,k)   // erase data gathered by ant k 
    set Run (k,0)  //set the counter of ants route k to 0 
   set node (k,s)  // set current vertex of ant k 
   set Visited (k,s) // set vertex as visited for ant k 
    Add (list, time, k)  // add ant k to list with time 0 
end 
convergence<= 0 
Cost_length<= +∞ 
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The parameters α and ᵦ modifies the method for the 
selection and updation of the new node or vertex, which in 
turn increases the quality of the solution. The parameter ρ 
defines the speed of the evaporation of the pheromone. 
 Faster the pheromone evaporates, less will be that path 
preferred for the next trail. Depending upon the whole 
procedure s and t are updated and final cost of the path is 
preferred. The above algorithm initiates the whole 
procedure and also uses all the above mentioned 
parameters [16]. 
  As discussed in algorithm (1), we can have the trail 
updated intensity. Let τi,j (t) be the intensity of trail on 
edges (i,j) at time t. Let n be the total number of iterations 
of the algorithm for the completion of the tour. At this 
stage, the trail intensity is updated as given in the formula 
below [17]: 
 
 
 
Where, ρ is the coefficient such that (1 -  ρ) is the 
evaporation rate between time t and (t + n) : 
  
 
 
Where Δ τi,j is the quantity of pheromone per unit length on 
edges (i, j). Now the transition probability by which ant k 
moves from starting point to destination is given below as: 
 
 
 
 
Where α and ᵦ are the parameters that controls the relative 
importance of trail path. The whole procedure of finding 
the shortest path in ACO depends upon the probability of 
moving of ants from one node to another and thus 
choosing the optimal one. 
 

VI. APPLYING ACO TO CPU SCHEDULING PROBLEM 
ACO is a metaheuristic technique which is based on the 
smart behavior of ants.  Given a set of incongruous multi-
processors and job scheduling, the artificial ant’s 
specifically with random probability assigns each job to 
one processor such that each job is assigned to specific 
processor only. Let the artificial pheromone value be τi,j 
with an edge between Ti and Pj. Initially, consider that τi,j 
will be same for all (i, j). After each iteration, the 
pheromone value on the edges is updated on every trail. 
The behavior probability of ants in heterogeneous 
multiprocessor in which ants randomly chooses a node 
from i to j is given as [18]: 
 
P (i, j) = τi,j / ∑j

m
=1 * τi,j                                         (5)                                            

 

 
Also, there is a condition that more than one ant might be 
active at a same time. The pseudo-code of the algorithm is 
shown below: 
 
Algorithm 2: ACO for scheduling problem 
do while (solution not converged) 

   for each iteration(ite) 
   { 
     for each ant(k) 
       for each job(j) 
        { 
             
            Select the process(Pi) 
            Each ant constructs solution search space 
            Fitness of each ant is calculated 
         } 
       If schedule is feasible, compute its quality 
       Select best ant on the basic of fitness 
      Update the pheromone based on the quality of each 
          feasible schedule. 
  Evaporate the pheromone 
  } 
Generate the next iteration 
 
The above algorithm explains the whole procedure of ant’s 
trails using the given parameters and the scheduling 
criteria. These steps are more elaborated in the following 
discussion: 
 
A. Solution Search Space:  In order to schedule the 
processes, basic ACO technique is adopted. Thus the 
solution formed includes the formation of search space 
and calculation of heuristic value.  
   The Fig. 3 shows the outlay of search space. [12] In 
search space, there are m rows, n columns and nk number 
of processes to be scheduled, where each node represents 
the single process. Each column consists of certain nodes 
which are connected to the nodes in the next column 
through directed edges except the nk

th node. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 3. Search space 

    

τi,j (t + n) = ρ * τi,j (t) + Δ τi,j                    (2) 

Δ τi,j = ∑mk=1   Δτi,j                                             (3) 

Ρi,j k (t) = [τi,j (t)]α .[ni,j]ᵦ / ∑k allowed [τi,j(t)]α . [ni,j]ᵦ 
 
 
                                                  

0 ;                   otherwise                  (4)                                                                        
 

S 

1 2 n-1 nk 
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Initially ant’s select the first node (process) on the basis of 
pheromone using roulette wheel selection method. When 
ants want to move to the next node, it uses the probability 
function, which is calculated using two parameters: 

• Pheromone value on the connected edges. 
• Heuristic value which is average turnaround time, 

average waiting time etc 

B. Constraints: An ant must traverse in a sequence i.e, 
from left to right. A single node must be selected in each 
column. During the trail, ant must visit only given nodes 
(processes) i.e, nk and every single node is particular in 
case of its label as shown in Fig. 3. 
 
C. Heuristic: The earlier deposited pheromone trail and 
heuristic function influences the choice of probability. In 
this case for optimization based on average waiting time, 
heuristic function will be average waiting time of 
particular tour of an ant. Similarly, for optimization based 
on average turnaround time, heuristic function will be 
average turnaround time of particular tour of an ant. 
 
D. Probability: The probability that a process will be 
selected in search space is calculated using two parameters 
i.e, heuristic value and pheromone value. In this case, 
probability is calculated using the following standard ACO 
equation: 
 
Ρi,j = (τ i,jα  *  n i,jᵦ) / (∑k ϵS  τ i,jα  *  n i,jᵦ) 
                                                                (6)                                        
Where, τi,j  represents the pheromone value on edges (i , j) 
and ni,j is the heuristic value on that edges. For 
optimization, these values may act as scheduling criteria. 
 
E. Roulette Wheel Selection: In this case, processes are 
being selected using the probability as calculated in 
equation (6). The chance of selection depends upon the 
higher probability. In roulette wheel selection method, 
processes are selected and assigned with area equal to their 
worth based on probability. This means, higher the 
probability of selection, larger space will be occupied. 
 
F. Fitness Function: The fitness function calculates the 
fitness of the trail of each ant. The fitness of the function is 
based upon the optimization criteria. For example, for 
optimizing average waiting time, the value of average 
waiting time of the ants trail is used as its fitness value as 
shown below in equation (7): 
 
τi,j = τi,j + fitness                                      (7) 
τi,j(t) = τi,j(t)+q/L+   if (i,j)ϵT                  (8) 
 
When all the ants complete a traverse, the best tour is 

found from the beginning of the trail (T) and quantity ( ) 

where q is the constant parameter and L+ is the length of 
the best tour. 
G. Pheromone: Ants navigate from food source to their 
colony using a chemical substance called pheromone. The 

two main components of ACO are pheromone updates and 
pheromone evaporates, as described below: 
 
(a) Pheromone Update: The pheromone value is modified 
all the time by ant’s navigation. After the trail is 
completed after a iteration, the pheromone value is 
updated on the path selected by the ants.[19] The equation 
of pheromone updation is shown below: 
 
 
 
 
 
The quality used for pheromone updation of next iteration 
is given by: 
 
 
 
 
 
 
 
 
(b) Evaporate Pheromone: It is also known as Pheromone 
decay. After every iteration, the pheromone values on the 
edges gets evaporated and decayed by some set 
percentage. So the edge with higher pheromone 
concentration looses more pheromone on the edges than 
the edges with lower pheromone concentration. The 
pheromone value is evaporated by using the following 
equation: 
 
 
 
Where, r is the decay constant which ranges from 0 to 1 
exclusively. Also pheromone evaporation rule is given as: 
 
 
 
The parameters which are considered in this discussion are 
the utilization of the processor i.e, the average waiting 
time and average turnaround time of all the jobs and the 
time taken for generating the feasible schedule. For each 
problem instance, some trails are made to run on the 
processor for ACO and the average values of all the 
parameters are considered. These values are then 
compared with the scheduling algorithm and the results 
are tabulated. The iterations are continued till the ants 
come up with the definite schedule. Then the schedule is 
said to be converged and focalized. 
 

VII. RESULTS AND DISCUSSION 
ACO is a metaheuristic that is probabilistic in nature, so 
the results thus generated will be unique if executed 
several times in definite number of iterations on the same 
problem. In this paper, results are compared and tabulated 
for cost function, average waiting time, average 
turnaround time and computational time given by ACO. 
   

If edge has been traversed then,  
τi,j = τi,j  + Update                             (9) 
 

τi,j = ρ * τi,j + q(s)   ; if Ji is assigned to Pj 

                                                                              in schedule S         
         = ρ * τi,j            ; Otherwise 
                                                                             (10) 

τi,j  = τi,j – r                                   (11) 

τi,j = (1- decay constant) * τi,j               (12)               
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A. Shortest path problem 
The ACO algorithm is implemented by completing the 
predefined number of iterations, whereas an ant is dropped 
by satisfying the predefined number of constraints before 
reaching its destination. ACO is used to select an optimal 
path along the multiple set of paths as shown in Fig (4). 
 

 
 
FIGURE 4. The optimal path selected by ants 
 
Initially pheromone value is set to be 0.01. Total number 
of ants is set to be 20 and total number of iterations is 300. 
The pheromone evaporation (ρ) constant is set at 0.05.  
 

TABLE III 
DIFFERENT VALUES OF ALPHA< BETA AND RHO 

FOR THE OPTIMAL COST FUNCTION 
S. 
No. 

Alpha(α) Beta(ᵦ) Rho(ᵧ) Cost 
Function 

1 0.0 0.0 0.05 319.5467 
2 0.5 0.5 0.05 315.3566 
3 1.0 1.0 0.05 315.3566 
4 1.5 1.5 0.05 315.3566 
5 1.8 1.8 0.05 315.3566 
6 2.0 2.0 0.05 319.5467 
7 2.5 2.5 0.05 320.2190 
8 3.0 3.0 0.05 320.9161 
9 3.5 3.5 0.05 319.4493 
10 4.0 4.0 0.05 319.4493 
 
 
Alpha, beta and rho values can range from 0.1 to 1.0. In 
this paper, we are trying to change the values of alpha and 
beta, so that we can analyze their affects on the cost 
function. At last, it will be clearly seen that the optimal 
path attained lies within the fixed range. The results thus 
obtained are shown in Table 3. 
From Table 3, it is clear that the optimal value of cost 
function lies within the range of alpha, beta and rho.  
 

 
 
FIGURE 5. Graphical representation of cost function along the number of iteration 

 
This calculated cost function is the fitness function which 
is of minimization type. The graphical representation of 
cost function along the given number of iterations is 
plotted as shown in Fig (5): 
 
B. Average waiting time 
A scheduling algorithm based on ACO is implemented 
and the algorithm is run for 9 problem instances with the 
number of processors be 9. The number of processes with 
their burst time is shown in Table 4. The arrival time for 
all the processes is same i.e, zero. 
 

TABLE IV 
BURST TIME OF ALL THE PROCESSES 

Process 
ID 

Burst Time of all the processes 
P1 P2 P3 P4 P5 P6 P7 P8 P9 

1 11 14 18 20 15 06 14 03 16 
2 03 19 16 05 16 05 12 10 05 
3 18 19 02 14 18 09 18 04 10 
4 15 09 15 14 04 13 03 07 07 
5 19 08 06 10 08 18 07 11 02 
6 19 13 06 09 14 12 04 12 12 
7 11 02 04 06 11 10 03 11 19 
8 10 13 10 11 19 17 08 19 05 
9 11 16 08 10 12 10 07 10 04 

10 04 06 02 07 12 17 08 04 04 
 
For scheduling algorithm, the number of ants used for 
ACO is 20 and the value of ρ is 0.5. Ten trails are done for 
each problem instance for ACO and the average values of 
wait time of both the algorithms i.e, FCFS and SJF are 
calculated and thus compared. 
For each problem instance, FCFS and SJF are run with its 
utilization matrix (shown in Table 1) used by ACO. Thus 
the results are tabulated in Table 5. 
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TABLE V 
COMPARISON OF SCHEDULING ALGORITHMS FOR 

AVERAGE WAITING TIME 

 

 
FIGURE 6. Comparison of Wait time of both the scheduling algorithms 

In Table 5, it is clearly seen from the results that SJF gives 
the optimum results as compared to FCFS for ACO. The 
pictorial representation of comparison of both the 
algorithms for average wait time is plotted in fig (6). 

Fig (6) is the clear demonstration of both the scheduling 
algorithm for average waiting time for given number of 
processes. 

C. Average turnaround time 
For calculating average turnaround time, consider the 
same file of 9 processes. There are same constant 
parameters i.e, alpha=1.5, Beta=1.8, rho=0.05 and ants 
size is 20.  

TABLE VI 
COMPARISON OF SCHEDULING ALGORITHMS FOR 

AVERAGE TURNAROUND TIME 

 

If the maximum allowed iterations will be increased, 
average values of scheduling criteria are improved. The 
Table 6 shows the computed values of both the algorithms. 
 

 
 

FIGURE 7. Comparison of Turnaround time of both the scheduling algorithms 
 
In the above Table 6, total turnaround time (TTAT) is 
calculated for 10 trails and its corresponding average 
turnaround time (ATAT) for both the algorithms is also 
calculated. It is clearly seen from the results that are 
plotted in the Fig (7). 
 For the calculation of turnaround time, both the 
algorithms i.e, FCFS and SJF are calculated and the 
graphical representations of results are plotted as shown in 
the Fig above. 

D. Computation time 

 The experimental results are shown in Table 5 and Table 
6 where the comparative analysis is done between FCFS 
and SJF algorithm.  

The comparison is done on the basis of results obtained 
from average waiting time and average turnaround time. 

 
TABLE VII 

COMPARISON OF SCHEDULING ALGORITHMS FOR 
COMPUTATIONAL TIME 

 

Runs ACO_FCFS ACO_SJF 
TWT AWT TWT AWT 

1 503 55.8889 353 39.2222 
2 391 43.4444 238 26.4444 
/3 498 55.3333 312 34.6667 
4 411 45.6667 247 27.4444 
5 405 45.0000 242 26.8889 
6 436 48.4444 312 34.6667 
7 247 27.4444 197 21.8889 
8 448 49.7777 342 38.0000 
9 400 44.4444 283 31.4444 
10 240 26.6667 161 17.8889 

Runs 
        ACO_FCFS           ACO_SJF 
TTAT ATAT TAT ATAT 

1 620 68.8889 470 52.2222 
2 482 53.5556 329 36.5556 
3 610 67.7778 424 47.1111 
4 489 55.3333 334 37.1111 
5 494 54.0000 331 36.7778 
6 537 59.6667 413 45.8889 
7 324 36.0000 274 30.4444 
8 560 62.2222 454 50.4444 
9 488 54.2222 371 41.2222 
10 304 33.7778 225 25.0000 

Runs ACO_FCFS (in sec) ACO_SJF (in sec) 
1 0.576943 0.626329 
2 0.619968 0.591003 
3 0.666770 1.396745 
4 0.645646 0.821382 
5 0.575617 0.786407 
6 0.589067 0.647729 
7 0.582400 0.756298 
8 0.587648 0.678892 
9 0.622608 0.727042 
10 0.577861 0.883066 
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FIGURE 8. Comparison of Computational time of both the scheduling algorithms  
 
Now the comparison is also done for the computational 
analysis as shown in Table 7. In the above Table 7, 
computational time of both the scheduling algorithm is 
analyzed as per run for the given number of iterations. The 
clear graphical representation of the above results is 
shown below in Fig (8). 
In the above discussion, scheduling algorithms are 
implemented and compared using ACO for various 
parameters. Their comparative results are also shown 
using graph charts. Now various hypothesis testing is done 
and their corresponding results are shown in later 
discussion. 
 
E. Hypothesis testing 
 
 In this paper, the primary objective of scheduling 
algorithms is to improve performance analysis. It depicts 
the usability of scheduling algorithms and compares them 
on the basis of different performance criteria. In order to 
compare the outcome of turnaround time and waiting time 
with different scheduling algorithms, the following 
hypothesis are proposed.  

• Hypothesis 1:  

Ho: The turnaround time of various scheduling 
algorithms are significant. 
H1: The turnaround time of various scheduling 
algorithms are not significant. 
 
• Hypothesis 2: 

Ho: The waiting time of various scheduling 
algorithms are significant. 
 
H1: The waiting time of various scheduling 
algorithms are not significant. 

Case I: If P-value <= α : Reject Ho 
 
Case II: If P-value > α : Accept Ho, there is no enough 
evidence to reject Ho. 
 
 
 
 

E-1.1: Experimental analysis 
 
For the testing of described hypothesis, the same 
scheduling algorithms are taken with sample size 10. 
These 10 processes are scheduled with burst time given in 
Table 4 and arrival time zero for every job. The 
turnaround time is calculated through simulator and the 
results are compared as shown below: 
 

TABLE VIII 
COMPARISON OF AVERAGE TURNAROUND TIME 
OF SCHEDULING ALGORITHMS USING ONE-
SAMPLE T-TEST 

 N Mean Std. Deviation Std. Error Mean 

A_T.A.T_FCFS 10 54.5445 11.75311 3.71666 
A_T.A.T_SJF 10 40.2776 8.76434 2.77153 

 

 

Test Value = 20 

t df Sig. (2-
tailed) 

Mean 
Diff. 

95% Confidence 
Interval of the 

Difference 
Lower Upper 

A_T.A.T_

FCFS 

9.2

9 
9 0 34.5 26.1 42.9 

A_T.A.T_

SJF 

7.3

1 
9 0 20.2 14.0 26.5 

 
In order to analyze the difference in performance of CPU 
scheduling algorithms for average turnaround time, T-test 
and ANOVA test are used as shown in Table 8 and Table 
9. 
  In Table 8, one- sample T-test is applied on scheduling 
algorithms for analyzing the confidence level of the 
algorithms. On the other hand, in Table 9, significance of 
both the algorithms is checked by applying the ANOVA 
test. 

TABLE IX 
COMPARISON OF TURNAROUND TIME OF 
SCHEDULING ALGORITHM USING ANOVA TEST 
 

A_T.A.T_      

FCFS Sum of 
Squares df Mean 

Square F Sig. 

Between 
Groups 1017.70 1 1017.7 

9.4 0.006 Within 
Groups 1934.54 18 107.47 

Total 2952.25 19  
 
In Table 9, turnaround time is significantly differ for 
scheduling algorithms, because the computed value (F) is 
highly significant at 5% level of significance and P-value 
is also greater the 0.05. 
Hence Ho is accepted which means alternate hypothesis is 
rejected which proves that turnaround time of various 
scheduling algorithms are significant and there is no 
enough evidence to reject Ho. 
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TABLE X 
COMPARISON OF AVERAGE WAITING TIME OF 
SCHEDULING ALGORITHMS USING ONE-SAMPLE 
T-TEST. 

 N Mean Std. 
Deviation 

Std. Error 
Mean 

A_W.T_F
CFS 10 44.2110 10.00726 3.16457 

A_W.T_S
JF 10 29.8555 6.95861 2.20051 

 
 

 

Test Value = 20 

t d
f 

Sig. 
(2-

taile
d) 

Mean 
Differen

ce 

95% Confidence 
Interval of the 

Difference 
Lower Upper 

A_T.A.T_
FCFS 7.65 9 .0 24.21 17.05 31.3 

A_T.A.T_
SJF 4.47 9 .00

2 9.855 4.877 14.8 

For analyzing the difference in performance of CPU 
scheduling algorithms for average waiting time, T-test and 
ANOVA test are used as shown in Table 10 and Table 11. 
 

TABLE XI 
COMPARISON OF WAITING TIME OF SCHEDULING 
ALGORITHM USING ANOVA TEST 
A_T.A.T_FC

FS      

 Sum of 
Squares df Mean 

Square F Sig. 

Between 
Groups 1030.39 1 1030.3 13.8 .002 

Within 
Groups 1337.10 18 74.284   

Total 2367.50 19    
 
In Table 11, the computed p-value is less than 5% level of 
significance which means that Ho is rejected. It concludes 
that waiting time of various scheduling algorithms is not 
significant. 
   In the above discussion, statistical analysis and 
comparison of various scheduling algorithms has been 
analyzed. The results clearly depict the performance of 
existing algorithms on the basis of t-test and ANOVA test 
and a comparative analysis for average turnaround time 
and average waiting time. 

CONCLUSION 
In this paper, a novel n-process scheduling is done using 
ACO. The main approach is to find a feasible job 
assignment with objective to keep all the processors more 
or less equally loaded. On comparison of FCFS and SJF 
scheduling algorithms using ACO, the ACO method 
balances the load fairly among different process 
assignments. The experimental results show that the 
SJF_ACO gives optimal results as compared to 
FCFS_ACO on the basis of average waiting time, average 
turnaround time and computational time. The further 

analysis is performed for finding shortest path using ACO 
and a hypothesis testing is also done for scheduling 
algorithms to find the optimal significance of both the 
algorithms. The first result shows that the turnaround time 
of FCFS and SJF for hypothesis testing is significant and 
there is no enough evidence to reject Ho. The second 
result shows that the waiting time of FCFS and SJF for 
hypothesis testing is not significant which means that Ho 
is rejected. 
In future, we will try to apply this algorithm for primitive 
as well as non-primitive algorithms for comparative 
analysis with arrival times. We will also try to apply this 
algorithm to find CPU throughput, utilization, response 
time, etc. 
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