
Analysis of Scheduling Algorithm for Ant Colony
Optimization

Ayushi1and P. Abrol2

1,2 Department of Computer science & IT,
University of Jammu, 180006, J&K, India

Abstract : Scheduling of different processes has a significant
effect on the overall performance of the system. Efficient
scheduling of jobs to incongruous processors for any application
is difficult to achieve for high performance. This paper presents
the comparative analysis of scheduling algorithms for n-
processes based on ant colony optimization (ACO) algorithm.
This study uses a prototype using ACO for the arrival of
processes at a schedule. ACO is an affective metaheuristic
optimization technique used for finding the optimal solution for
single as well as multi-variant problems. Moreover, the results
present the deterministic scheduling algorithms (First Come First
Serve and Shortest Job First) for the comparative analysis in the
tabulated format using ACO technique for average waiting time
and average turnaround time.of the system. Efficient scheduling
of jobs to incongruous processors for any application is difficult
to achieve for high performance. This paper presents the
comparative analysis of scheduling algorithms for n- processes
based on ant colony optimization (ACO) algorithm. This study
uses a prototype using ACO for the arrival of processes at a
schedule. ACO is an affective metaheuristic optimization
technique used for finding the optimal solution for single as well
as multi-variant problems. Moreover, the results present the
deterministic scheduling algorithms (First Come First Serve and
Shortest Job First) for the comparative analysis in the tabulated
format using ACO technique for average waiting time and
average turnaround time.
Index Terms ACO, metaheuristic, FCFS, SJF, average waiting
time, average turnaround time, scheduling, processes.

I. INTRODUCTION
The incongruous computing platform meets the

computational demands of various problems. In this type
of platform, different types of jobs are executed in a
sequence. The main key challenge of such incongruous
platforms is effective scheduling [1]. Scheduling is one of
the major factors in operating system (OS) that affects the
overall performance of the system. By scheduling the
processes and assigning different jobs to the processors in
a specified sequence to maximize the systems efficiency.
When more than one process are ready to execute in the
ready queue, then the module of OS decides to use the
schedulers(scheduling algorithms) that decides which
process will be executed first. Scheduling of processes
basically is the mapping of set of jobs to the set of
processors which avoids the situation where some of the
processors are overloaded while others are idle [2]. Fig.
(1) shows the diagrammatical structure where scheduling
fits in the multi-variant processes and their requests in a
very simplified manner [3].

There are different types of scheduling algorithms
which satisfies the scheduling criteria of OS for
maximizing CPU utilization. Various scheduling criteria’s

are: average turnaround time, average waiting time,
average response time, burst time, etc. Also there are
various scheduling algorithms each having its own
characteristics, which are used for scheduling jobs in OS.
They are: first come first serve algorithm, shortest job first
algorithm, priority based scheduling algorithm, round
robin algorithm, etc. [4]. Different types of scheduling
processes are performed to solve different scheduling
problems in order to improve their efficiency as shown in
Fig. (1).

Several heuristic based algorithms are proposed to solve
different types of scheduling problems. But we are using
ant colony optimization (ACO) algorithm in our case to
optimize the scheduling of processes. ACO finds the near
optimal solution within the reasonable computational time.

II. RELATED WORK
Several metaheuristic algorithms are proposed in case of
scheduling problem. In (Braun et al., 2001) [5], the author
has compared eleven metaheuristic algorithms for
mapping and then scheduling a set of processes for
minimizing the makespan of different processes. Many
more different types of algorithms are defined such as:
list-based scheduling algorithm (Radulescu and Gemund,
2002) [6], cluster-based and duplication-based scheduling
algorithm (Ucar et al., 2006) [7]. In (Blum and Roli, 2003)
[8], the author describes the one of the popular
approximation optimization technique, i.e, ACO. This
technique is inspired by the foraging behavior of real ants.
In the further addition, (Blum, 2005) [9], author suggested
that the chemical pheromone which is deposited by the
ants on their trail path form food source to their colony is
the core behavior of their indirect communication.
According to Adhokshai mishra et al [10], Genetic
algorithm is mostly used for process scheduling in
different OS. Its main limitation is that there is no absolute
assurance that it will ever find the global optimum
solution. That’s why ACO is best to be used for process
scheduling as it gives better results for approximation and
combinational problems.

III. BASIC ACO ALGORITHM
Ant colony optimization (ACO) works as an optimization
technique that was first introduced in early 1990’s by
Dorigo and Gamberdella. It is a probabilistic algorithm
that uses pseudorandom proportional rule. It is a
population based metaheuristic that tackles NP-hard
discrete and combinational optimization problems [11]
motivated by the sharp and foraging behavior of real ants,

ISSN:0975-9646
Ayushi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 11 (6) , 2020, 112-121

www.ijcsit.com 112

and in particular, how ants can find the shortest path
between their colonies and the food source. Their indirect
communication (a terminology known as Stigmergy) [12]
is inspired by means of the trails of some chemical matter
called pheromone. The role of pheromone is to guide the
other ants to reach to the particular destination point. In
Fig. 2, it is clearly observed that the quickest trail time on
the shortest path makes the pheromone value high which is
placed on that path. [13]

From Fig. 2, it is clear that ant’s navigate from nest (N) to
the food source (F). As ants are blind, the shortest path is
discovered through the higher concentration of pheromone
value. Ant’s move at random and deposits pheromone on

their path. More pheromone on the path increases the
probability of the path being followed.
In this paper, we are going to define a new type of general-
purpose metaheuristic algorithm that can be used to solve
different types of discrete-combinatorial optimization
problems. The new defined metaheuristic algorithm has
following desirable characteristics:

• Versatile: It can be applied to the same problem
with similar versions. For example, asymmetric
travelling salesperson problem is the straight
forward extension of simple travelling
salesperson problem.

• Robust: It can be easily applied to other
combinatorial optimization problems with only
minimal changes to them. For example,
assignment problem and scheduling problem.

• Population based approach: It allows the
exploitation of positive feedback as a new
updated search mechanism.

These above mentioned desirable properties are counter
balanced by the fact that for different applications, the
ACO can be out performed by more specialized
algorithms.

FIGURE 2 Ants navigation from nest (N) to food source (F) and vice-versa.

F F F

N N N

(a) (b) (c)

Ready Running

New
Blocked

Done

Selected to run

Enter

Process
created

I/O Req

Normal or Abnormal
termination

Ready Running

New Blocked

Done

Enter

Process
created

Normal or Abnormal
termination

Selected to run

Quantum
expired

I/O
complete

I/O req

FIGURE 1. Scheduling Processes

Ayushi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 11 (6) , 2020, 112-121

www.ijcsit.com 113

IV. PROBLEM STATEMENT
Efficient and strategic scheduling of jobs in incongruous
processors for any type of application is difficult in order to
achieve high performance. The core work is to find the
feasible schedule for a given set of processors without
exceeding their capacity, is actually, NP-hard. The study of
this paradigm uses ACO for arriving at a schedule.

To solve the scheduling problem, there are m processors
(p1, p2, p3……. Pm) and all these processors have their
static burst time. [14] Let there be n number of jobs with
job set (j1, j2, j3, ….., jn). Therefore we will be having a
utilization matrix U of size n*m where n be the number of
jobs and m be the number of processors. Our main goal is
to find the optimum sequence of processes in which the
processes can be scheduled in such a method that total
turnaround time and total waiting time should be
minimum. The sample utilization matrix is shown in Table
1:

TABLE I
 Utilization matrix with 3 processors and 3 jobs

Jobs Processes
P1 P2 P3

J1 U1,1 U1,2 U1,3
J2 U2,1 U2,2 U2,3
J3 U3,1 U3,2 U3,3

Where, Ui,j α Pi * Jj
In the sample utilization matrix shown in above Table, the
number of rows is equal to the number of jobs and number
of columns is equal to the number of processes.

A. Assumptions made by CPU Scheduling Problem.

• There are m-processes waiting for the CPU
allocation.

• All the processes are independent of each other
and all are in a competition for the allocation of
CPU.

• The purpose of scheduling algorithm is to
allocate CPU to every process in some particular
order so that neither process have to wait for
CPU allocation nor CPU have to remain idle in
order to optimize the performance criteria of the
algorithm i.e, minimum turnaround time and
minimum waiting time.

• The ACO based scheduling algorithm should be
non-primitive i.e, no one can have the permission
to get the CPU from one process and allocate it to
another process during execution.

• The arrival time of all the processes should be
zero.

V. APPLYING ACO TO SHORTEST PATH PROBLEM
For a directed graph G= (V, E) where V is the set of
vertices (V1, V2,…., Vn) and E is the set of edges (E1,
E2,…., En), assign the total cost ai,j to each of its edges,
where (i, j) ϵ E (this cost is basically the length of the

tour). For the resulting path (n1, n2,…., nk), its cost can be
expressed as [15]:
ai,j = ∑ k-1

 i=1 ani ni+1 (1)
According to the definition, a path is called the shortest
path if it has the shortest length among all the paths from
starting node to the terminating node.
 The shortest path problem finds its application in various
areas such as telecommunication problem, routing
problem, etc. For finding shortest path in ACO, it uses
some parameters, as shown in Table 2:

TABLE II
 Parameters of ACO finding shortest path
Parameters Values

M number of Ants
Α the parameter that defines the influence of

pheromones on the choice of the next
vertex

ᵦ parameters that defines the influence of
remaining data on the choice of next vertex

Ρ parameters that defines the speed at which
pheromone evaporates, where ρ = [0, 1]

τo initial level of pheromone on edges
τmin,τmax minimum and maximum acceptable of

pheromones on edges
s starting node
t terminating node

The number of ant’s m influences the accuracy of the
solution obtained as the result of the procedure of the
algorithm. The parameters α and ᵦ modifies the method for
the selection and updation of the new node or vertex,
which in turn increases the quality of the solution.

Algorithm 1: ACO for shortest path problem
Initialize (G, s) for the shortest path
Initial vertex, s= 0; C <= 0
for al l i ϵ V do
 for all j ϵ V do
 τi,j <= τo

 vi_edgesi,j <= false
set (i,j) be the edges not visited
 if ai,j > C then C<= ai,j
 end
 Vi_nodesi <= false
 Set i node not to be visited
end
cost <= C (V-1)
time<= 0
for k: 1 to m do
 reset (G,k) // erase data gathered by ant k
 set Run (k,0) //set the counter of ants route k to 0
 set node (k,s) // set current vertex of ant k
 set Visited (k,s) // set vertex as visited for ant k
 Add (list, time, k) // add ant k to list with time 0
end
convergence<= 0
Cost_length<= +∞

Ayushi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 11 (6) , 2020, 112-121

www.ijcsit.com 114

The parameters α and ᵦ modifies the method for the
selection and updation of the new node or vertex, which in
turn increases the quality of the solution. The parameter ρ
defines the speed of the evaporation of the pheromone.
 Faster the pheromone evaporates, less will be that path
preferred for the next trail. Depending upon the whole
procedure s and t are updated and final cost of the path is
preferred. The above algorithm initiates the whole
procedure and also uses all the above mentioned
parameters [16].
 As discussed in algorithm (1), we can have the trail
updated intensity. Let τi,j (t) be the intensity of trail on
edges (i,j) at time t. Let n be the total number of iterations
of the algorithm for the completion of the tour. At this
stage, the trail intensity is updated as given in the formula
below [17]:

Where, ρ is the coefficient such that (1 - ρ) is the
evaporation rate between time t and (t + n) :

Where Δ τi,j is the quantity of pheromone per unit length on
edges (i, j). Now the transition probability by which ant k
moves from starting point to destination is given below as:

Where α and ᵦ are the parameters that controls the relative
importance of trail path. The whole procedure of finding
the shortest path in ACO depends upon the probability of
moving of ants from one node to another and thus
choosing the optimal one.

VI. APPLYING ACO TO CPU SCHEDULING PROBLEM
ACO is a metaheuristic technique which is based on the
smart behavior of ants. Given a set of incongruous multi-
processors and job scheduling, the artificial ant’s
specifically with random probability assigns each job to
one processor such that each job is assigned to specific
processor only. Let the artificial pheromone value be τi,j
with an edge between Ti and Pj. Initially, consider that τi,j
will be same for all (i, j). After each iteration, the
pheromone value on the edges is updated on every trail.
The behavior probability of ants in heterogeneous
multiprocessor in which ants randomly chooses a node
from i to j is given as [18]:

P (i, j) = τi,j / ∑j

m
=1 * τi,j (5)

Also, there is a condition that more than one ant might be
active at a same time. The pseudo-code of the algorithm is
shown below:

Algorithm 2: ACO for scheduling problem
do while (solution not converged)

 for each iteration(ite)
 {
 for each ant(k)
 for each job(j)
 {

 Select the process(Pi)
 Each ant constructs solution search space
 Fitness of each ant is calculated
 }
 If schedule is feasible, compute its quality
 Select best ant on the basic of fitness
 Update the pheromone based on the quality of each
 feasible schedule.
 Evaporate the pheromone
 }
Generate the next iteration

The above algorithm explains the whole procedure of ant’s
trails using the given parameters and the scheduling
criteria. These steps are more elaborated in the following
discussion:

A. Solution Search Space: In order to schedule the
processes, basic ACO technique is adopted. Thus the
solution formed includes the formation of search space
and calculation of heuristic value.
 The Fig. 3 shows the outlay of search space. [12] In
search space, there are m rows, n columns and nk number
of processes to be scheduled, where each node represents
the single process. Each column consists of certain nodes
which are connected to the nodes in the next column
through directed edges except the nk

th node.

FIGURE 3. Search space

τi,j (t + n) = ρ * τi,j (t) + Δ τi,j (2)

Δ τi,j = ∑mk=1 Δτi,j (3)

Ρi,j k (t) = [τi,j (t)]α .[ni,j]ᵦ / ∑k allowed [τi,j(t)]α . [ni,j]ᵦ

0 ; otherwise (4)

S

1 2 n-1 nk

Ayushi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 11 (6) , 2020, 112-121

www.ijcsit.com 115

Initially ant’s select the first node (process) on the basis of
pheromone using roulette wheel selection method. When
ants want to move to the next node, it uses the probability
function, which is calculated using two parameters:

• Pheromone value on the connected edges.
• Heuristic value which is average turnaround time,

average waiting time etc

B. Constraints: An ant must traverse in a sequence i.e,
from left to right. A single node must be selected in each
column. During the trail, ant must visit only given nodes
(processes) i.e, nk and every single node is particular in
case of its label as shown in Fig. 3.

C. Heuristic: The earlier deposited pheromone trail and
heuristic function influences the choice of probability. In
this case for optimization based on average waiting time,
heuristic function will be average waiting time of
particular tour of an ant. Similarly, for optimization based
on average turnaround time, heuristic function will be
average turnaround time of particular tour of an ant.

D. Probability: The probability that a process will be
selected in search space is calculated using two parameters
i.e, heuristic value and pheromone value. In this case,
probability is calculated using the following standard ACO
equation:

Ρi,j = (τ i,jα * n i,jᵦ) / (∑k ϵS τ i,jα * n i,jᵦ)
 (6)
Where, τi,j represents the pheromone value on edges (i , j)
and ni,j is the heuristic value on that edges. For
optimization, these values may act as scheduling criteria.

E. Roulette Wheel Selection: In this case, processes are
being selected using the probability as calculated in
equation (6). The chance of selection depends upon the
higher probability. In roulette wheel selection method,
processes are selected and assigned with area equal to their
worth based on probability. This means, higher the
probability of selection, larger space will be occupied.

F. Fitness Function: The fitness function calculates the
fitness of the trail of each ant. The fitness of the function is
based upon the optimization criteria. For example, for
optimizing average waiting time, the value of average
waiting time of the ants trail is used as its fitness value as
shown below in equation (7):

τi,j = τi,j + fitness (7)
τi,j(t) = τi,j(t)+q/L+ if (i,j)ϵT (8)

When all the ants complete a traverse, the best tour is

found from the beginning of the trail (T) and quantity ()

where q is the constant parameter and L+ is the length of
the best tour.
G. Pheromone: Ants navigate from food source to their
colony using a chemical substance called pheromone. The

two main components of ACO are pheromone updates and
pheromone evaporates, as described below:

(a) Pheromone Update: The pheromone value is modified
all the time by ant’s navigation. After the trail is
completed after a iteration, the pheromone value is
updated on the path selected by the ants.[19] The equation
of pheromone updation is shown below:

The quality used for pheromone updation of next iteration
is given by:

(b) Evaporate Pheromone: It is also known as Pheromone
decay. After every iteration, the pheromone values on the
edges gets evaporated and decayed by some set
percentage. So the edge with higher pheromone
concentration looses more pheromone on the edges than
the edges with lower pheromone concentration. The
pheromone value is evaporated by using the following
equation:

Where, r is the decay constant which ranges from 0 to 1
exclusively. Also pheromone evaporation rule is given as:

The parameters which are considered in this discussion are
the utilization of the processor i.e, the average waiting
time and average turnaround time of all the jobs and the
time taken for generating the feasible schedule. For each
problem instance, some trails are made to run on the
processor for ACO and the average values of all the
parameters are considered. These values are then
compared with the scheduling algorithm and the results
are tabulated. The iterations are continued till the ants
come up with the definite schedule. Then the schedule is
said to be converged and focalized.

VII. RESULTS AND DISCUSSION
ACO is a metaheuristic that is probabilistic in nature, so
the results thus generated will be unique if executed
several times in definite number of iterations on the same
problem. In this paper, results are compared and tabulated
for cost function, average waiting time, average
turnaround time and computational time given by ACO.

If edge has been traversed then,
τi,j = τi,j + Update (9)

τi,j = ρ * τi,j + q(s) ; if Ji is assigned to Pj

 in schedule S
 = ρ * τi,j ; Otherwise
 (10)

τi,j = τi,j – r (11)

τi,j = (1- decay constant) * τi,j (12)

Ayushi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 11 (6) , 2020, 112-121

www.ijcsit.com 116

A. Shortest path problem
The ACO algorithm is implemented by completing the
predefined number of iterations, whereas an ant is dropped
by satisfying the predefined number of constraints before
reaching its destination. ACO is used to select an optimal
path along the multiple set of paths as shown in Fig (4).

FIGURE 4. The optimal path selected by ants

Initially pheromone value is set to be 0.01. Total number
of ants is set to be 20 and total number of iterations is 300.
The pheromone evaporation (ρ) constant is set at 0.05.

TABLE III
DIFFERENT VALUES OF ALPHA< BETA AND RHO

FOR THE OPTIMAL COST FUNCTION
S.
No.

Alpha(α) Beta(ᵦ) Rho(ᵧ) Cost
Function

1 0.0 0.0 0.05 319.5467
2 0.5 0.5 0.05 315.3566
3 1.0 1.0 0.05 315.3566
4 1.5 1.5 0.05 315.3566
5 1.8 1.8 0.05 315.3566
6 2.0 2.0 0.05 319.5467
7 2.5 2.5 0.05 320.2190
8 3.0 3.0 0.05 320.9161
9 3.5 3.5 0.05 319.4493
10 4.0 4.0 0.05 319.4493

Alpha, beta and rho values can range from 0.1 to 1.0. In
this paper, we are trying to change the values of alpha and
beta, so that we can analyze their affects on the cost
function. At last, it will be clearly seen that the optimal
path attained lies within the fixed range. The results thus
obtained are shown in Table 3.
From Table 3, it is clear that the optimal value of cost
function lies within the range of alpha, beta and rho.

FIGURE 5. Graphical representation of cost function along the number of iteration

This calculated cost function is the fitness function which
is of minimization type. The graphical representation of
cost function along the given number of iterations is
plotted as shown in Fig (5):

B. Average waiting time
A scheduling algorithm based on ACO is implemented
and the algorithm is run for 9 problem instances with the
number of processors be 9. The number of processes with
their burst time is shown in Table 4. The arrival time for
all the processes is same i.e, zero.

TABLE IV
BURST TIME OF ALL THE PROCESSES

Process
ID

Burst Time of all the processes
P1 P2 P3 P4 P5 P6 P7 P8 P9

1 11 14 18 20 15 06 14 03 16
2 03 19 16 05 16 05 12 10 05
3 18 19 02 14 18 09 18 04 10
4 15 09 15 14 04 13 03 07 07
5 19 08 06 10 08 18 07 11 02
6 19 13 06 09 14 12 04 12 12
7 11 02 04 06 11 10 03 11 19
8 10 13 10 11 19 17 08 19 05
9 11 16 08 10 12 10 07 10 04

10 04 06 02 07 12 17 08 04 04

For scheduling algorithm, the number of ants used for
ACO is 20 and the value of ρ is 0.5. Ten trails are done for
each problem instance for ACO and the average values of
wait time of both the algorithms i.e, FCFS and SJF are
calculated and thus compared.
For each problem instance, FCFS and SJF are run with its
utilization matrix (shown in Table 1) used by ACO. Thus
the results are tabulated in Table 5.

Ayushi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 11 (6) , 2020, 112-121

www.ijcsit.com 117

TABLE V
COMPARISON OF SCHEDULING ALGORITHMS FOR

AVERAGE WAITING TIME

FIGURE 6. Comparison of Wait time of both the scheduling algorithms

In Table 5, it is clearly seen from the results that SJF gives
the optimum results as compared to FCFS for ACO. The
pictorial representation of comparison of both the
algorithms for average wait time is plotted in fig (6).

Fig (6) is the clear demonstration of both the scheduling
algorithm for average waiting time for given number of
processes.

C. Average turnaround time
For calculating average turnaround time, consider the
same file of 9 processes. There are same constant
parameters i.e, alpha=1.5, Beta=1.8, rho=0.05 and ants
size is 20.

TABLE VI
COMPARISON OF SCHEDULING ALGORITHMS FOR

AVERAGE TURNAROUND TIME

If the maximum allowed iterations will be increased,
average values of scheduling criteria are improved. The
Table 6 shows the computed values of both the algorithms.

FIGURE 7. Comparison of Turnaround time of both the scheduling algorithms

In the above Table 6, total turnaround time (TTAT) is
calculated for 10 trails and its corresponding average
turnaround time (ATAT) for both the algorithms is also
calculated. It is clearly seen from the results that are
plotted in the Fig (7).
 For the calculation of turnaround time, both the
algorithms i.e, FCFS and SJF are calculated and the
graphical representations of results are plotted as shown in
the Fig above.

D. Computation time

 The experimental results are shown in Table 5 and Table
6 where the comparative analysis is done between FCFS
and SJF algorithm.

The comparison is done on the basis of results obtained
from average waiting time and average turnaround time.

TABLE VII

COMPARISON OF SCHEDULING ALGORITHMS FOR
COMPUTATIONAL TIME

Runs ACO_FCFS ACO_SJF
TWT AWT TWT AWT

1 503 55.8889 353 39.2222
2 391 43.4444 238 26.4444
/3 498 55.3333 312 34.6667
4 411 45.6667 247 27.4444
5 405 45.0000 242 26.8889
6 436 48.4444 312 34.6667
7 247 27.4444 197 21.8889
8 448 49.7777 342 38.0000
9 400 44.4444 283 31.4444
10 240 26.6667 161 17.8889

Runs
 ACO_FCFS ACO_SJF
TTAT ATAT TAT ATAT

1 620 68.8889 470 52.2222
2 482 53.5556 329 36.5556
3 610 67.7778 424 47.1111
4 489 55.3333 334 37.1111
5 494 54.0000 331 36.7778
6 537 59.6667 413 45.8889
7 324 36.0000 274 30.4444
8 560 62.2222 454 50.4444
9 488 54.2222 371 41.2222
10 304 33.7778 225 25.0000

Runs ACO_FCFS (in sec) ACO_SJF (in sec)
1 0.576943 0.626329
2 0.619968 0.591003
3 0.666770 1.396745
4 0.645646 0.821382
5 0.575617 0.786407
6 0.589067 0.647729
7 0.582400 0.756298
8 0.587648 0.678892
9 0.622608 0.727042
10 0.577861 0.883066

Ayushi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 11 (6) , 2020, 112-121

www.ijcsit.com 118

FIGURE 8. Comparison of Computational time of both the scheduling algorithms

Now the comparison is also done for the computational
analysis as shown in Table 7. In the above Table 7,
computational time of both the scheduling algorithm is
analyzed as per run for the given number of iterations. The
clear graphical representation of the above results is
shown below in Fig (8).
In the above discussion, scheduling algorithms are
implemented and compared using ACO for various
parameters. Their comparative results are also shown
using graph charts. Now various hypothesis testing is done
and their corresponding results are shown in later
discussion.

E. Hypothesis testing

 In this paper, the primary objective of scheduling
algorithms is to improve performance analysis. It depicts
the usability of scheduling algorithms and compares them
on the basis of different performance criteria. In order to
compare the outcome of turnaround time and waiting time
with different scheduling algorithms, the following
hypothesis are proposed.

• Hypothesis 1:

Ho: The turnaround time of various scheduling
algorithms are significant.
H1: The turnaround time of various scheduling
algorithms are not significant.

• Hypothesis 2:

Ho: The waiting time of various scheduling
algorithms are significant.

H1: The waiting time of various scheduling
algorithms are not significant.

Case I: If P-value <= α : Reject Ho

Case II: If P-value > α : Accept Ho, there is no enough
evidence to reject Ho.

E-1.1: Experimental analysis

For the testing of described hypothesis, the same
scheduling algorithms are taken with sample size 10.
These 10 processes are scheduled with burst time given in
Table 4 and arrival time zero for every job. The
turnaround time is calculated through simulator and the
results are compared as shown below:

TABLE VIII
COMPARISON OF AVERAGE TURNAROUND TIME
OF SCHEDULING ALGORITHMS USING ONE-
SAMPLE T-TEST

 N Mean Std. Deviation Std. Error Mean

A_T.A.T_FCFS 10 54.5445 11.75311 3.71666
A_T.A.T_SJF 10 40.2776 8.76434 2.77153

Test Value = 20

t df Sig. (2-
tailed)

Mean
Diff.

95% Confidence
Interval of the

Difference
Lower Upper

A_T.A.T_

FCFS

9.2

9
9 0 34.5 26.1 42.9

A_T.A.T_

SJF

7.3

1
9 0 20.2 14.0 26.5

In order to analyze the difference in performance of CPU
scheduling algorithms for average turnaround time, T-test
and ANOVA test are used as shown in Table 8 and Table
9.
 In Table 8, one- sample T-test is applied on scheduling
algorithms for analyzing the confidence level of the
algorithms. On the other hand, in Table 9, significance of
both the algorithms is checked by applying the ANOVA
test.

TABLE IX
COMPARISON OF TURNAROUND TIME OF
SCHEDULING ALGORITHM USING ANOVA TEST

A_T.A.T_

FCFS Sum of
Squares df Mean

Square F Sig.

Between
Groups 1017.70 1 1017.7

9.4 0.006 Within
Groups 1934.54 18 107.47

Total 2952.25 19

In Table 9, turnaround time is significantly differ for
scheduling algorithms, because the computed value (F) is
highly significant at 5% level of significance and P-value
is also greater the 0.05.
Hence Ho is accepted which means alternate hypothesis is
rejected which proves that turnaround time of various
scheduling algorithms are significant and there is no
enough evidence to reject Ho.

Ayushi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 11 (6) , 2020, 112-121

www.ijcsit.com 119

TABLE X
COMPARISON OF AVERAGE WAITING TIME OF
SCHEDULING ALGORITHMS USING ONE-SAMPLE
T-TEST.

 N Mean Std.
Deviation

Std. Error
Mean

A_W.T_F
CFS 10 44.2110 10.00726 3.16457

A_W.T_S
JF 10 29.8555 6.95861 2.20051

Test Value = 20

t d
f

Sig.
(2-

taile
d)

Mean
Differen

ce

95% Confidence
Interval of the

Difference
Lower Upper

A_T.A.T_
FCFS 7.65 9 .0 24.21 17.05 31.3

A_T.A.T_
SJF 4.47 9 .00

2 9.855 4.877 14.8

For analyzing the difference in performance of CPU
scheduling algorithms for average waiting time, T-test and
ANOVA test are used as shown in Table 10 and Table 11.

TABLE XI
COMPARISON OF WAITING TIME OF SCHEDULING
ALGORITHM USING ANOVA TEST
A_T.A.T_FC

FS

 Sum of
Squares df Mean

Square F Sig.

Between
Groups 1030.39 1 1030.3 13.8 .002

Within
Groups 1337.10 18 74.284

Total 2367.50 19

In Table 11, the computed p-value is less than 5% level of
significance which means that Ho is rejected. It concludes
that waiting time of various scheduling algorithms is not
significant.
 In the above discussion, statistical analysis and
comparison of various scheduling algorithms has been
analyzed. The results clearly depict the performance of
existing algorithms on the basis of t-test and ANOVA test
and a comparative analysis for average turnaround time
and average waiting time.

CONCLUSION
In this paper, a novel n-process scheduling is done using
ACO. The main approach is to find a feasible job
assignment with objective to keep all the processors more
or less equally loaded. On comparison of FCFS and SJF
scheduling algorithms using ACO, the ACO method
balances the load fairly among different process
assignments. The experimental results show that the
SJF_ACO gives optimal results as compared to
FCFS_ACO on the basis of average waiting time, average
turnaround time and computational time. The further

analysis is performed for finding shortest path using ACO
and a hypothesis testing is also done for scheduling
algorithms to find the optimal significance of both the
algorithms. The first result shows that the turnaround time
of FCFS and SJF for hypothesis testing is significant and
there is no enough evidence to reject Ho. The second
result shows that the waiting time of FCFS and SJF for
hypothesis testing is not significant which means that Ho
is rejected.
In future, we will try to apply this algorithm for primitive
as well as non-primitive algorithms for comparative
analysis with arrival times. We will also try to apply this
algorithm to find CPU throughput, utilization, response
time, etc.

REFERENCES
 [1]G.U.Srikanth, V.U. Maheswari, A.P. Shanthi and A.Siromoney, “A

survey on real time task,” in European J. of Scientific Research vol.
69(1), pp. 33-41, 2012.

[2]J. Mao, “Task Scheduling of parallel programming systems using Ant
Colony Optimization,” in Proceedings of the 3rd Int. Symposium on
Computer Science and Computational Technology (ISCSCT), vol.
10,pp. 179-182, 2010.

[3]Monika and Neelam, “job scheduling using FCFS and priority queue
in system,” in int. J. of Electrical Electronics and Computer science
eng., vol. 2, pp. 6-9, 2015.

[4]A. Abhijit, Rajguru and S.S. Apte, “A performance analysis of Task
Scheduling algorithms using Qualitative parameters,” in Int. J. of
Computer app., vol. 74, pp. 33-38, 2018.

[5]Braun, D.T., H.J. Siegel, N. Beck, L.L. Boloni and M. Maheswaran,
“A comparison of eleven static heuristics for mapping a class of
independent tasks onto heterogeneous distributed computing
systems,” in J. Parallel Distributed Comput., vol. 61, pp. 810- 837,
2001.

[6]A. Radulescu and V.J.C. Gemund, “ Low-cost task scheduling for
distributed-memory machines,” in IEEE Trans. Parallel Distributed
Syst., vol. 13, pp. 648-658, 2002.

[7]B. Ucar, C. Aykanat, K. Kaya and M. Ikinci, “Task assignment in
heterogeneous computing systems,” in J. Parallel Distributed
Comput., vol. 66, pp. 32-46, 2006.

[8]C. Blum and A. Roli, “Metaheuristics in combinatorial optimization:
Overview and conceptual comparison,” in ACM Comput. Surv. ,
vol.35, pp. 268-308, 2003.

[9]C. Blum, “Ant colony optimization: Introduction and recent trends,” in
Phys. Life Rev. (IIA CSIC), vol. 2, pp. 353-373, 2005.

[10]Adhokshai Mishra, Ankur Verma, “Genetic Algorithm For Process
Scheduling in distributed Operating System,” in International
Journal of Eng. Science and Technology, vol. 2(9), pp. 4247-4252,
2010.

[11]Christian Blum, “Ant colony optimization: Introduction and recent
trends,” albcom, lsi, Universitat Politècnica de Catalunya, Jordi
Girona1-3, vol. 2(4), pp. 353–373, 2005.

[12]Fariha Nosheen, Sadia Bibi and Salabat Khan, “Ant Colony
Optimization based Scheduling Algorithm,” in Int. Conf. on Open
Source System and Tech. (ICOSST), IEEE, vol. 13, pp. 18-22, 2013.

[13]Salabat Khan, Mohsin Bilal, M. Sharif, Malik Sajid, Rauf Baig,
“Solution of n-Queen Problem Using ACO,” International
Multitopic Conference, Islamabad, IEEE, vol. 2, pp. 1-5, 2009.

[14]H. Chen and A.M.K. Cheng, “Applying ant colony optimization to
the partitioned scheduling problem for heterogeneous
multiprocessors,” in ACMUSA, vol. 2, pp. 11-14, 2005.

[15]M. Dorigo, “Optimization, Learning and Natural Algorithms,” in
Ph.D. Thesis, Politècnica di Milano, 1992.

[16]mariusz gł ˛abowski, bartosz musznicki, przemysław nowak and
piotrzwierzykowsk, “Shortest path problem solving based on ant
colony Optimization metaheuristic,” in J. of Image Processing &
Communication, vol. 17, pp. 7-18, 2013.

[17]Marco Dorigo, Vittorio Maniezzo, and Albert0 Colorni, “Ant
System: Optimization by a Colony of Cooperating Agents,” in IEEE
transactions on systems, man, and cybernetics-part b cybernetics,
vol. 26, pp. 1-4, 1996.

Ayushi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 11 (6) , 2020, 112-121

www.ijcsit.com 120

[18]Umarani Srikanth G., V. Uma Maheswari, P. Shanthi and Arul
Siromoney, “Tasks Scheduling using Ant Colony Optimization,” in
J. of Computer Science, vol. 8 (8), pp. 1314-1320, 2012.

[19]Daniel Angus, “Solving a unique Shortest Path problem using Ant
Colony Optimization,” in Centre for Intelligent Systems and
Complex Processes, vol. 8, pp.1-26, 2010.

[20]Vikas Gaba, Anshu Prashar, “Comparison of processor scheduling
algorithms using Genetic Approach,” in Int. J. of Advanced Research
in Computer Science and Software Engineering, vol. 2, pp. 37-45,
2012.

[21]J. Blazewicz, W. Domschkz, and E. Pesch, “The job shop scheduling
problem: Conventional and new solution techniques,” in European J.
of Operational Res., vol. 93, pp. 1-30, 1996.

[22]P. Moscato and MG. Norman, “A memetic approach for the traveling
salesman problem implementation of a computational ecology for
combinatorial optimization on message-passing systems,” in Int.
conf. on parallel comput. And transporter application, vol. 13, pp.
21-45, 1992.

[23]Marco Dorigo, Member IEEE, Vittorio Maniezzo, and Albert
Colorni, “Ant System: Optimization by a Colony of Cooperating
Agents,” in IEEE transactions on systems, man, and cybernetics-part
b cybernetics, vol. 26, pp. 1-4, 1996.

[24]G. D. Caro and M. Dorigo, "Extending Ant Net for best-effort
quality-of-service routing," in the Proc. of the First Int. Workshop on
Ant Colony Optimization, vol. 98, pp. 701-220, 1999.

[25]Dorigo, M. Caro, G. D., and Gambardella, L. M., “Ant Algorithms
for Discrete Optimization: Artificial Life,” in the Int. J. of
Advanced Manufacturing Technology, vol. 5(2), pp. 137-172,
1999.

[26]Guoqiang Peter Zhang, “Neural Networks for Classification: A
Survey,” in IEEE transactions on systems, man, and cybernetics—
part c: applications and reviews, vol. 30, pp. 127-128, 2000.

[27]K. C. Tan, T. H. Lee, D. Khoo, and E. F. Khor, “A Multi-objective
Evolutionary Algorithm Toolbox for Computer-Aided Multi-
objective Optimization,” in IEEE Trans. on Syst., man and
cybernetics-Part B: cybernetics, vol. 31, pp. 537-555, 2001.

[28]K. M. Passino, “Biomimicry of Bacterial Foraging for Distributed
Optimization and Control,” in IEEE Control Syst. Magazine, vol.
22(3), pp. 1-12, 2006.

[29]D. Martens, M. De Backer, R. Haesen, J. Vanthienen, M. Snoeck and
B. Baesens, “Classification with Ant Colony Optimization,” in IEEE
Trans. on Evol. Computation, vol. 11, pp. 651-665, 2007.

[30]Dan Simon, Senior Member, IEEE, “Biogeography-Based
Optimization,” in IEEE Trans. on Evol. Computation, vol. 12, pp.
107-125, 2008.

[31]C. Zhang, D. Ouyang and J. Ning, “An artificial bee colony approach
for clustering,” in Expert Syst. and Applications, vol. 37 (7), pp.
4761-4767, 2010.

[32]Yang, X.S., “Firefly Algorithm, Stochastic Test Functions and
Design optimization,” in Int. J. Bio-Inspired Computation, vol. 2, pp.
78-84, 2010.

[33]Imad Zyouta, Ikhlas Abdel-Qaderb and Christina Jacob, “Embedded
Feature Selection using PSO-kNN: Shape-Based Diagnosis of Micro
calcification Clusters in Mammography,” in J. of Ubiquitous Syst. &
Pervasive Networks, vol. 3, pp. 7-11, 2011.

[34]Krishna H. Hingrajiya, Ravindra Kumar Gupta and Gajendra Singh
Chandel, “An Ant Colony Optimization Algorithm for Solving
Travelling Salesman Problem,” in Int. J. of Scientific and Res.
Publications, vol. 2, pp. 1-6, 2012.

[35]Vahid Soleimani and Farnoosh Heidari Vincheh, “Improving ant
colony optimization for brain MRI image segmentation and brain
tumor diagnosis, Pattern Recognition and Image Analysis,” in First
Iranian conf. on pattern recognition and image analysis (PRIA),
IEEE, vol. 13, pp. 978-985, 2013.

[36]Rongali Srujana and Yalavarthi Radhika, “A Study on Recent
Advances on Ant Colony Optimization Algorithm,” in Int. J. of
Advanced Scientific Res. & Development (IJASRD), vol. 4 (02/I), pp.
89-96, 2017.

[37]Dr. Kuldeep Singh Kaswan and Amandeep, “A new technique for
CPU scheduling: standard deviation based,” in Int. J. of Advanced
Res. in Computer Eng. & Tech. (IJARCET), vol. 6, pp. 1278-1282,
2017.

[38]Jogamohan Medak and Partha Pratim Gogoi, “A comprehensive
analysis of disk scheduling algorithms,” in Int. J. of Latest Trends in
Eng. and Technology, vol. 11, pp. 11-23, 2018.

[39]Sudhanshu prakash tiwari and Dr. kapil kumar Bansal, “Nature
inspired algorithms on Industrial applications: A survey,” in Int. J. of
Applied Eng. Res., vol. 13, pp. 4282-4290, 2018.

[40]Neetu Goel and Dr. R.B. Garg, “A Comparative Study of CPU
Scheduling Algorithms,” in Graphics & Image Processing, vol. 2,
pp. 245-251, 2012.

Authors Profile
Ayushi received the B.E. degree in computer engineering in 2015 and the
M.Tech degree in computer science in 2019 from the University of
Jammu, Jammu & Kashmir. She has published two papers in
international journals.
Mr. Pawanesh Abrol is professor at the Department of Computer
Science & IT, and presently Head, Department of Remote Sensing And
GIS, University of Jammu. He has done his Ph.D. in Computer Science
from University of Jammu. Besides, he also holds the degree of MBA
(HRM). Dr. Abrol has more than twenty years of teaching and research
experience at post graduate level. He has received INSA visiting
Fellowship to visit IIT Kanpur. He has more than forty research
publications in various reputed national and international reputed
international journals including SCOPUS, Thomson Reuters, (SCI &
Web of Science) and conferences including IEEE. His research interests
include aura based texture analysis, image analysis and authentication
and eye gaze technologies. Dr. Pawanesh Abrol has been the member of
various academic bodies and committees. He is also a Fellow of
Institution of Engineers, Kolkata and IETE, New Delhi besides member
of CSI and ISTE.

Ayushi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 11 (6) , 2020, 112-121

www.ijcsit.com 121

